D1-kifpool

محققان الگوریتمی با قابلیت شبیه‌سازی مغز انسان توسعه دادند

دوشنبه ۱۹ فروردین ۱۳۹۸ - ۱۴:۰۰
مطالعه 4 دقیقه
توسعه‌ی الگوریتم‌های هوش مصنوعی برای شبیه‌سازی مغز انسان با قدرت ادامه دارد و محققان به نتایج مقبولی نیز دست یافته‌اند.
تبلیغات
D4-mci

گروهی از محققان اخیرا توانسته‌اند روشی برای اجرای یادگیری ماشین کشف کنند که برخی از جنبه‌های عملکردی اصلی مغز انسان را تقلید کند. الگوریتم‌های به‌دست‌آمده از تحقیقات جدید امکان‌پذیری بیولوژیکی هم دارند و به‌احتمال زیاد، زمینه‌های جدیدی به حوزه‌ی هوش مصنوعی اضافه می‌کنند.

دیمیتری کروتوف، محقق IBM و جان جی. هاپفیلد، مخترع شبکه‌ی عصبی مشارکتی، در تحقیقات درباره‌ی الگوریتم جدید همکاری کردند. آن‌ها مجموعه‌ای از الگوریتم‌ها را توسعه دادند که شبیه به آموزش‌‌دادن به انسان‌ها، ماشین‌ها را آموزش می‌دهد. الگوریتم آن‌ها به ماشین امکان می‌دهد در رویکردی بدون نظارت خاص آموزش ببیند. درواقع، روش آن‌ها برخلاف راهکارهای موجود برچسب‌گذاری دیتاست است که امروزه، در اکثر فرایندهای یادگیری عمیق استفاده می‌شود.

بسیاری از تحقیقات پیشین در حوزه‌ی هوش مصنوعی که در دهه‌های ۱۹۸۰ و ۱۹۹۰ انجام شد، روی درک نحوه‌ی فعالیت شبکه‌ی عصبی انسان متمرکز بود. به‌علاوه، تبدیل آن به زبانی درک‌کردنی برای ماشین‌ها نیز در دستورکار آن تحقیقات قرار داشت. ایده‌ی مهم آن سال‌ها درک بهترین روش برای نشان‌دادن فعالیت عصب‌ها با استفاده از ریاضیات بود. مرحله‌ی بعدی نیز با مقیاس‌دهی همان یافته‌ها برای استفاده در ماشین‌ها انجام می‌شد. متأسفانه آن رویکرد به‌خوبی ادامه پیدا نکرد و اکثر تحقیقات درباره‌ی هوش مصنوعی تا دهه‌ی ۲۰۰۰، تقریبا فراموش شده بود.

هوش مصنوعی

تحقیقات کروتوف و هاپفیلد به‌نوعی از روش‌های قدیمی توسعه‌ی هوش مصنوعی استفاده می‌کند؛ اما قدمی جدید برای شبیه‌سازی مغزی شبکه‌های عصبی ارائه می‌دهد. کروتوف در مصاحبه‌ای درباره‌ی تحقیقاتش گفت:

اگر درباره‌ی عصب‌شناسی صحبت کنیم، قطعا جزئیات زیادی درباره‌ی نحوه‌ی کارکردن آن وجود دارد. سازوکارهای بیوفیزیکی پیچیده در فعالیت‌های انتقال عصبی مفصل‌های سیناپسی، وجود بیش از یک نوع سلول، جزئیات فعالیت‌های پیچیده‌ی آن سلول‌ها و موارد دیگر، همگی پیچیدگی سیستم عصبی را بیشتر می‌کنند. ما در تحقیقاتمان تمام آن جزئیات را نادیده گرفتیم. درعوض، ما تنها یک عنصر پایه‌ای را در فعالیت خود اضافه کردیم که در شبکه‌های عصبی زیستی هم وجود دارد. عنصر پایه‌ای مدنظر ما نیز ارتباط صرفا جفتی عصب‌ها با یکدیگر بود.به‌بیانِ‌دیگر، مدل ما اجرای کامل مدل‌های زیستی واقعی نیست و درواقع، فاصله‌ی زیادی هم با آن دارد. روش ما برداشتی ریاضیاتی از نمونه‌ی زیستی بوده که در مفهومی کاملا ریاضیاتی اجرا شده است.

شبیه‌سازی کامل فرایندهای مغز مشکلات جزئی زیادی دارد

مدل‌های مدرن یادگیری عمیق عموما روی روش‌های آموزش «بازگشت به عقب» (Backpropagation) متمرکز می‌شوند. این روش آموزشی روی مغز انسان کاربرد ندارد؛ چون به داده‌های غیرمحلی وابسته است. به‌عنوان مثال، مغز ما می‌تواند تصاویر را بدون آموزش مرسوم پردازش کند. درواقع، می‌توانیم مواردی که قبلا ندیده‌ایم، به‌خوبی پردازش کنیم که با روش آموزش بازگشت به عقب برای ماشین‌ها تفاوت دارد.

آموزش یادگیری شبیه انسان به ماشین‌، دشواری‌های زیادی دارد. آن آموزش شبیه این است که خواندن را تنها با توضیح‌دادن حروف الفبا و بدون نشان‌دادن آن‌ها به افراد یاد دهیم. درواقع ماشین‌ها برخلاف ما، ارتباط حسی مستقیمی با جهان پیرامون ندارند. به‌هرحال به‌نظر می‌رسد کروتوف و هاپفیلد مشکل مذکور را با ساختن الگوریتمی حل کرده باشند که نمونه‌‌ای درک‌کردنی از داده می‌سازد.

یادگیری عمیق / Deep learning

کروتوف درباره‌ی مدل‌سازی الگوریتم‌شان می‌گوید:

اغلب وقتی به شبکه‌ی عصبی عمیق آموزش می‌دهیم، وظیفه‌ی آن را از قبل مشخص می‌کنیم. مثلا می‌گوییم اعداد با دست‌خط دست‌نویس را شناسایی کند. سپس، الگوریتم داده‌های موردنیاز خود را بسته به وظیفه‌ی مدنظر، در فضایی پنهان پیدا می‌کند. در نمونه‌‌ی ما، وزن‌های (Weights) لایه‌ی اولیه‌ی شبکه‌ی عصبی، به دانستن وظیفه نیاز ندارد. درواقع، آن لایه فقط روی خود داده آموزش می‌بیند. سپس بعد از پایان‌یافتن آموزش، می‌توانیم وظیفه را مشخص کنیم. در مفهوم جدید، وزن‌های لایه‌ی اولیه درباره‌ی وظیفه اطلاع خاصی ندارند.

تحقیقات اخیر رویکردی در حوزه‌ی هوش مصنوعی اجرا کردند که به‌نوعی فراموش شده بود. درواقع، شاید یادگیری‌های عمیق مدرن امروزه به حوزه‌ی اصلی تحقیقات تبدیل شده باشند؛ اما الگوریتم‌هایی با امکان‌پذیری بیولوژیکی نیز به زمینه‌های اصلی تحقیقات بازگردند. البته، محققان بررسی اخیر می‌گویند کاربردی‌بودن روش آن‌ها در هوش مصنوعی هنوز به بررسی‌های عمیق‌تر نیاز دارد. کوروتوف می‌گوید مقاله‌ی آن‌ها تنها روی کاغذ نشان می‌دهد که با استفاده از روشی شبیه به ساختارهای بیولوژیکی، می‌توان کاربرد مناسبی از هوش مصنوعی انتظار داشت. درواقع، مقاله‌ی آن‌ها بیش از این مرحله پیش نمی‌رود و مهر تأییدی بر کاربردی‌بودن خود نمی‌زند.

درنهایت، همین که محققان توانستند روش‌هایی برای اجرای یادگیری شبیه به عناصر بیولوژیکی کشف کنند، جای امیدواری دارد. شاید یافته‌های آن‌ها، آینده‌ی یادگیری عمیق و توسعه‌ی هوش مصنوعی را نیز تغییر دهد.

مقاله رو دوست داشتی؟
نظرت چیه؟
داغ‌ترین مطالب روز
یک ماکت بادی در کنار لوگو تسلا
کمپین ضد تسلا در سراسر دنیا وارد مرحله جدیدی شد

طغیان مردم علیه تسلا در گوشه‌گوشه‌ی جهان جریان دارد و اعتراض‌ها وارد مرحله‌ی تازه‌ای شده است.

84
یک روز پیش
گوشی های گلکسی S24 و S24 پلاس کنار هم
سامسونگ فروش رسمی گوشی‌های کارکرده را شروع کرد

علاقه‌مندان به گوشی‌های پرچم‌دار سامسونگ اکنون می‌توانند نسخه‌ی ریفربیشد این محصولات را با قیمت ارزان‌تر بفروشند.

20
یک روز پیش
استون مارتین والکری
رکوردشکنی در برنامه تخت گاز؛ خودرو استون مارتین والکری نگاه‌ها را خیره کرد

والکری فراتر از ابرخودرو معمولی است؛ هیولایی که در پیست برنامه‌ی «تخته گاز» غوغا به پا کرد و توانایی‌هایش را رخ کشید.

13
یک روز پیش
تصویری از ساختمان شرکت اپل
اپل به‌دلیل فعال‌کردن ویژگی جنجالی ATT آیفون ۱۶۲ میلیون دلار جریمه شد

اپل باردیگر درگیر مشکلات حقوقی شد و نصمیم نهادهای نظارتی فرانسه این شرکت را با جریمه‌ی سنگینی روبه‌رو کرده است.

44
یک روز پیش
گلکسی S4 در کنار جعبه‌ی گلکسی S25 پلاس
۱۲ سال با گلکسی S4؛ کاربر قدیمی سامسونگ از مهاجرت به گلکسی S25 پلاس می‌‌گوید

یکی از کاربران ردیت وفاداری ۱۲ ساله‌اش به گلکسی S4 سامسونگ را روایت کرد.

212
یک روز پیش
پنل پشتی گوشی پوکو C71
گوشی اقتصادی پوکو C71 همین هفته معرفی می‌شود

گوشی اقتصادی پوکو C71 با رنگ‌بندی جذاب و قیمتی رقابتی همین هفته در هند رونمایی می‌شود.

114
یک روز پیش
منظره‌ی تپه‌ی Bliss ویندوز XP
منظره والپیپر ویندوز XP اکنون چه شکلی است؟

تپه‌ی سرسبزی که در عکس معروف ویندوز XP به آسمانی ژرف تکیه داده بود، روزی واقعیت داشت؛ اما امروز، دیگر خبری از آن منظره‌ی بکر نیست.

85
یک روز پیش
تبلیغات
DN-DNShatel

نظرات

تبلیغات
D7-B6Snappshop
D7-zoomitproduct
پخش از رسانه
coming soon...

با چشم باز خرید کنید
زومیت شما را برای انتخاب بهتر و خرید ارزان‌تر راهنمایی می‌کند
ورود به بخش محصولات